Lack of NMDA receptor subunit exchange alters Purkinje cell dendritic morphology in cerebellar slice cultures.

نویسندگان

  • Friedrich Metzger
  • Isabelle Pieri
  • Ulrich L M Eisel
چکیده

Early postnatal developmental changes in N-methyl-d-aspartate (NMDA) receptor (NR) subunits regulate cerebellar granule cell maturation and potentially Purkinje cell development. We therefore investigated Purkinje cell morphology in slice cultures from mice with genetic subunit exchange from NR2C to NR2B (NR2C-2B). NR2C-2B Purkinje cells after 12 days in vitro showed a significantly impaired dendritic arbour complexity with reduced branching density as compared to wild-type cells, a phenotype that was reversed by NMDA treatment. These data support the concept that in cerebellar slice cultures, Purkinje cell dendritic outgrowth is regulated by granule cell inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Plasma Membrane Ca2+-ATPase2 (PMCA2) Is Involved in the Regulation of Purkinje Cell Dendritic Growth in Cerebellar Organotypic Slice Cultures

Purkinje cells are the principal neurons of the cerebellar cortex and have an extensive and elaborate dendritic tree. Chronic activation of type I metabotropic glutamate receptors inhibits Purkinje cell dendritic growth in organotypic cerebellar slice cultures. This effect is mediated by calcium influx through P/Q-type and T-type Ca(2+) channels. We have now studied the role of the plasma membr...

متن کامل

Pre and Post Synaptic NMDA Effects Targeting Purkinje Cells in the Mouse Cerebellar Cortex

N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not ...

متن کامل

Early Increase and Late Decrease of Purkinje Cell Dendritic Spine Density in Prion-Infected Organotypic Mouse Cerebellar Cultures

Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there ...

متن کامل

Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production.

Here, we show that cultured Purkinje cells from inositol 1,4,5-trisphosphate receptor type 1 knock-out (IP3R1KO) mice exhibited abnormal dendritic morphology. Interestingly, despite the huge amount of IP3R1 expression in Purkinje cells, IP3R1 in granule cells, not in the Purkinje cells, was responsible for the shape of Purkinje cell dendrites. We also found that BDNF application rescued the den...

متن کامل

Impact of NMDA Receptor Overexpression on Cerebellar Purkinje Cell Activity and Motor Learning

In many brain regions involved in learning NMDA receptors (NMDARs) act as coincidence detectors of pre- and postsynaptic activity, mediating Hebbian plasticity. Intriguingly, the parallel fiber (PF) to Purkinje cell (PC) input in the cerebellar cortex, which is critical for procedural learning, shows virtually no postsynaptic NMDARs. Why is this? Here, we address this question by generating and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research. Developmental brain research

دوره 155 2  شماره 

صفحات  -

تاریخ انتشار 2005